Section 3.1

Definition of Exponential Function

The exponential function f with base a is denoted by

$$f(x) = a^x$$

where a > 0, $a \neq 1$, and x is any real number.

The Natural Base *e*

The number $e \approx 2.718281828$... is called the natural base. The function given by $f(x) = e^x$ is called the natural exponential function.

Formulas for Compound Interest

After t years, the balance A in an account with principle P and annual interest rate r (in decimal form) is given by the following formulas.

- a) For *n* compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- b) For continuous compounding: $A = Pe^{rt}$

Problem 1. Use the graph of *f* to describe the transformation that yields the graph of *g*.

a)
$$f(x) = 3^x$$
, $g(x) = 3^x - 2$

b)
$$f(x) = 8^x$$
, $g(x) = 8^{-x+5}$

Problem 2. Sketch the graph of the following functions: $f(x) = 0.5^x$, $g(x) = e^x$, $h(x) = e^{-x}$.

Problem 3. Solve the following equations for *x*.

a)
$$3^{x+1} = 27$$

b)
$$\left(\frac{1}{2}\right)^{x-1} = 64$$

c)
$$e^{5x+4} = e^7$$

d)
$$e^{x^2-24} = e^{2x}$$

Problem 4. A total of \$12,000 is invested at an annual interest rate of 6%. Find the balance after 8 years if it is compounded

a) Monthly

b) Quarterly

c) Every 4 months

d) Continuously

e) Yearly

Problem 5. The population *P* (in millions) of Russia from 1996 to 2004 can be approximated by the model $P = 152.26e^{-0.0029t}$, where *t* represents the year, with t = 6 corresponding to 1996.

a) According to the model, is the population of Russia increasing or decreasing? Explain.

b) Find the population of Russia in 1998 and 2000.

Problem 6. Let Q represent a mass of carbon 14 $\binom{14}{C}$ (in grams), whose half-life is 5715 years. The quantity of carbon 14 present after t years is $Q = 10 \left(\frac{1}{2}\right)^{t/5715}$.

a) Determine the initial quantity (when t = 0).

b) Determine the quantity present after 2000 years.

Homework: Read section 3.1, do #7, 17, 23, 29, 37, 51, 55, 63, 68