## Section 3.1

## Definition of Exponential Function

The exponential function $f$ with base $a$ is denoted by

$$
f(x)=a^{x}
$$

where $a>0, a \neq 1$, and $x$ is any real number.

## The Natural Base $\boldsymbol{e}$

The number $e \approx 2.718281828 \ldots$ is called the natural base. The function given by $f(x)=e^{x}$ is called the natural exponential function.

## Formulas for Compound Interest

After $t$ years, the balance $A$ in an account with principle $P$ and annual interest rate $r$ (in decimal form) is given by the following formulas.
a) For $n$ compoundings per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
b) For continuous compounding: $A=P e^{r t}$

Problem 1. Use the graph of $f$ to describe the transformation that yields the graph of $g$.
a) $f(x)=3^{x}, g(x)=3^{x}-2$
b) $f(x)=8^{x}, g(x)=8^{-x+5}$

Problem 2. Sketch the graph of the following functions: $f(x)=0.5^{x}, g(x)=e^{x}, h(x)=e^{-x}$.

Problem 3. Solve the following equations for $x$.
a) $3^{x+1}=27$
b) $\left(\frac{1}{2}\right)^{x-1}=64$
c) $e^{5 x+4}=e^{7}$
d) $e^{x^{2}-24}=e^{2 x}$

Problem 4. A total of $\$ 12,000$ is invested at an annual interest rate of $6 \%$. Find the balance after 8 years if it is compounded
a) Monthly
b) Quarterly
c) Every 4 months
d) Continuously
e) Yearly

Problem 5. The population $P$ (in millions) of Russia from 1996 to 2004 can be approximated by the model $P=152.26 e^{-0.0029 t}$, where $t$ represents the year, with $t=6$ corresponding to 1996.
a) According to the model, is the population of Russia increasing or decreasing? Explain.
b) Find the population of Russia in 1998 and 2000.

Problem 6. Let $Q$ represent a mass of carbon $14\left({ }^{14} C\right)$ (in grams), whose half-life is 5715 years. The quantity of carbon 14 present after $t$ years is $Q=10\left(\frac{1}{2}\right)^{t / 5715}$.
a) Determine the initial quantity (when $t=0$ ).
b) Determine the quantity present after 2000 years.

